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The author considers the problem of the formation of the guidance action
in a nonlinear control system under the condition of the minimum of the
integral for the estimate of quality for small initial disturbances. The
problem is solved by the methods of Liapunov and Chetaev in stability
theory.

1. Let us consider the system of equations of a disturbed motion

dz;
Tﬁ}‘:: fi (z, ) (i=1,..., n) (1.1)
Here x = {xl, cee, xn} is an n-dimensional vector in the phase co-

ordinates of the system, u is a scalar function of the x; coordinates
which describes the guidance action, the control.

It is required to find such a control u(x) that for x = 0 the undis-
turbed motion is asymptotically stable, and for which along the trajec-
tories of the system the following integral will have a minimum:

G (z, n) dt = min (1.2)

Seg

Here G(x, u) is a given function which characterizes the criterion of
quality. Letov[1,2 ] has studied this type of problem for a linear
system under the condition when G(x, u) is a quadratic form.

We shall assume that the functions f;(x, u) and G(x, u) are analytic
functions in some neighborhood of the origin x = 0, u = 0, and that they
can be expanded in convergent power series

film,u) = D) @™ (2) + D) Apuk + D qu™@)ub —1,... ) (1.3)
k=1

m=j} k, m=1
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Gz, uy= D) 9™ (&) + 2 Bk + 2y G2k (By=0) (1.4)
k=2

m=2 k, m=1

where the symbol (m) gives the order of the form.

We shall give a sufficient criterion for the optimum of the control.
This criterion will be based on the ideas of the method of Liapunov’s
function [3 ] which involves certain ideas from the theory of dynamic
programming [ 4 1. For this purpose we consider two functions v(x) and
¥’ (x) satisfying the following conditions:

a) the function v(x) satisfies the conditions of Liapunov’s theorem on
asymptotic stability [5, p. 29 1;

b) the derivative function of v(x) satisfies,in view of the system
(1.1), with u = £(x), the equation

(dv / dt)ye) = —G (x, E(2))
c) the function

H (xa E) = (dl) / dl)g_(x) + G (.I, g)

has a minimum at each point x of some neighborhood of the origin if
one sets £ = u°(x).

Theorem 1.1. If one can find functions v(x) and u®(x) satisfying con-
ditions (a) to (c), then the control u = u®x) will be an optimal control,
i.e. 1t will satisfy the condition (1.2)*,

Proof. From the condition (b) it follows by integration with respect
to t that along the trajectories of the system (1.1), with & = u°(x)

t
v (@ (1) — v (w) = (G (2 (0, v (z (1) dv

Let us now take the limit as t » e, taking into account the fact that,
by condition (a), x » 0 when ¢ » . We then obtain

v (z0) = SG (x (2), u° (z (1)) de

Let us assume that the theorem is false, that the control u°(x) satis-
fying (a) to (c) is not an optimal control, namely, that there exists a

L J

Such a criterion was given for linear systems in[6 ].
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control u,;(x) such that

| G @@ w (@ @) de<\ G0, u (z (1)) d

for some initial condition xy. From condition (c¢) we have
(@0 | Ay > —G (&, w1 (@)

Integrating this inequality along a trajectory of the system (1.1)
we obtain

o0

v (20) <\ G (2 (), w (@ ) dt

0

which contradicts the hypothesis. Hence, the theorem is proved.

2. In this section we present a formal method for the construction of
a Liapunov function v(x), and of an optimal control u®{(x) in the form of
a power series in x. For the sake of simplicity, we shall drop the index

° on 1P (x).

From Theorem 1.1 it follows that it is sufficient to find functions
v(x) and u(x) satisfying the condition

muin{(fi—z; + G (x, u)} 0 (2.1)

This condition yields the system of equations

n

1 v v
;1 file.w) 5o+ G (@, w) = 0 (2.2)
S0 e ot Y
F T R i (2:3)

i==1

We shall restrict ourselves at first to the lowest-degree terms in x
and u of the series (1.3) and (1.4). Then the functions filx, u) =
¢i(1)(x) +Aju(i=1, ..., n) will be linear functions, while G(x,u) =

#2 (2) + ¢V (2)u + B2u2 must be considered to be a quadratic form
(positive -definite).* The system of equations (1.1) will be a linear one

* From practical considerations 1t follows that such functions estimate
especially well the quality of transient processes [1,2].
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CEe @ (@) Aqu (@) =1 ) (2.4)
and the condition for an optimum of the equation takes the form
[ @ (2) 9 (@) w0 £ Be (@) dt = min (2.5

4]

From Equation (2.3) we find the control to be

It

i dv(2) { .
ull (4) = — 5= > Ay Be gy 0V (@) (2.6)

Q=1

The Liapunov function v‘2)(x) will be a quadratic form whose coeffi-
cients satisfy a system of quadratic equations which are solvable under
certain conditions. These conditions were found in [6 1. We shall assume
that the conditions for solvability of the linear system are satisfied,
and that we know the solution of the linear problem v‘2)(x) and u{1)(x).

The solutions of Equations (2.2) and (2.3) are to be found for the
general case in the form

v () =.0@ () 403 (z) +... fom(x) ... (2.7
u(x) = u® (z) +a(z) ... a0 (x) 4... (2.8)

Let us formally substitute (1.3), (1.4), (2.7) and (2.8) into the
system of equations (2.2) and (2.3), and let us equate to zero the co-
efficients of the powers of x. Hereby, the terms of the mth order in
Equation (2.2) will corresyond to the terms of the (m — 1)st order in
(2.3). For the functions v'?)(x) and u'!’(x) one obtains the same equa-
tion as above in the consideration of the linear problem (2.4), (2.5).

Let us assume that the functions v3)(x), , v Dy,
u(?)(x), , u{"2)(%) have been found. Let us write down the mth order
terms of Equahlon (2.2), and the terms of the (m - 1)st order of Equation
(2.3). Ve thus obtain

1l

(m}) (m)
X0 () B e () 2 P ”u)z AT
i:&
2B)u () u" TV (@) m"” Y (@) “’(-/>=F1‘"" () (2.9)
(111}
. 411 ”; 2BV (g) = FLOY () (2.10)

Taking into account (2.4) and (2.6), we can transform Equation (2.9)
to the form
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) \“ N
= £ (@) (2.11)

Here Fl(')(x), F}""l)(x) are known forms; the symbol (dv(')/dt)(2_4)
indicates the derivative on the basis of (2.4) when u‘!)(x) is given by

(2.6).

Since the system (2.4) is asymptotically stable, we have by Liapunov’s
theorem [ 7, p. 61 ] that there exists a unique solution of Equation
(2.11). Knowing »‘®(x), we can find u{®~1)(x) with the aid of (2.10).
Thus one can determine successively the forms of any order in the series
(2.7) and (2.8). Hence, if the problem (2.5) can be solved for the linear
approximation, then there exists a unique formal solution of the non-
linear problem.

3. In this section we prove, for a typical case, the convergence of
the formal series whose construction was described in Section 2.

Let us consider the system given by the equations

— (@) +ba (i@ =3 i™@) G=t...,0 (31

dz;

dt

where f.(x) are analytic functions.

Suppose that along the trajectories of the system (3.1) the following
integral 1s minimized:

S (3] = + w?)dt = min (3.2)
0 i=1 ’
The functions v(x) and u(x) satisfy the conditions
< i 1 (s 90\ <
V@) g — (D b )+ S e =0 (3.3)
i=1 ¢ i=1 v’ i=1
1 &, ov
i=1

Ve shall assume that the solution of the linear problem v‘2’(x) and
u{1(x) is known, and that the linear system of the first approximation

dz;

dt

i (@
— W@ — b DT = (3.5)

=1

is asymptotically stable. Let

Ty = CpYr -+ . .. - CinYn (i=1,....n) (3.6)
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be a linear nonsingular transformation [8 ] which reduces the quadratic
form v{?)(x) to the form

v (y) =y 4+ .y (3.7)
Let its inverse transformation be given by

Yi = dilxl + PO + dinxn (i = i,...,n) (38)

Since the roots of the characteristic equation are invariant under
any linear nonsingular transformetion, the linear system in the new vari-
ables will also be asymptotically stable, and it will have the form

n
Gifi (3 ) — — B S B i (3.9)
ZS jtli Y 5P 2 b 3y; F=1 ..., 3.
i=1 j=1
while Equation (3.3) will become
533 ;1} dr \2 7’; ,
ZlF § W) 5y — (']Zi Bj@;-) + ijZ;LBijZiiyf=0 (3.10)
j= = —

where

F.?' (?j) 2 d:nf:(x y)), B = 2 d;zb G=1,...,n) (311)

i=1

The functions F.(y) will obviously be analytic functions in the new
variables, and Equation (3.10) will be of the same type as (3.3). Hence
we shall assume that the transformation (3.6) was made to begin with,
and thatzthe solution of the problem (3.5) has the form v‘?)(x) = xlz +

ce + X,

For what follows we need the next assertion,

If fi(x), ..., fo(x) is the system of analytic functions of the
right-hand 31des of Equations (3.1), then there exists a convergent
power series

n

ozo] Cpnr™ (r“’ = > xﬁ)

m=1 i=1
such that the following inequality is valid:
|A™ (x) | << Cour™ =1, ..,m3m=1,2,3...) (3.12)
Let us substitute (2.7) and (3.1) into (3.3), and equate to zero the

coefficients of the powers of x. Then we obtain the following set of
equations for the determination of the terms of the series (2.7}):
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n
dv(3)> ')
— =— 2 i®(z
( at )35 1;1 2 o
n n n
dv<4)> 90 d® ( FRCAY
— = — 2 /i (2) =— — 3) (¢ . b =—
( at [ (3.5 iz @) 0x; i§1 A )0% b4 \Zl‘ T |
n n
dp™ gp(m—1) ) gplm—2)
(L) == D@3 e @ e
(3.5) =1 Oxi jom
n s n
_ ov® 1
o R (@) T
i=1 i

93 - ) dy(m—1
S8 (S0
i= i =1
1 [ g 00O\ w, 8002 L {3, a2t Y
+7(2bi8—xi>(zbi Ox; )++T<Zb’ Ox;

i=1 i=1 i==1

/

where the last term occurs only when m is even.

For the proof of the convergence of the series (2.7) we make use of
the known inequalities

2 K emAprm1

i

(m)
| o) () | < Apr™, | apim

(3.14)

where ¢ is a coefficient of proportionality which does not depend on the
order of the form. We also utilize (3.12) and consider the series

o (r) =7r* L Asr® ... FApr™ ... (3.15)

The series (3.15) is a dominating series for (2.7). It is only neces-
sary to establish estimates of the coefficients A, for which the series
will converge. With the aid of the relations (3.13) we estimate Ay, Ay,
ey Ay, ... . From the first equation of (3.13) we have

¢ av® I
(3) = | —— (2) — 3

|03 (z) ‘ &2/‘1 (x)azi dtl<2ncC2&rdt

0 1= 0
Let us introduce the notation n; = nc, and make use of the inequality
r(t) < roe_"‘“) which is satisfied by the solution of the system (3.5)
because r? = x12 oo+ x“2 = v{2)(x) is a Liapunov function for the
system of the first approximation.

Then we obtain

1 1
‘ 7](3) (x) l < W 2nlc2r03, or A3 == .3_a 2n1€2
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In exactly the same way we estimate v (x), v05)(x), and so on. We
thus obtain the following values for the coefficients of the series

(3.15}:
As = - 2mCs
3o

Ag = %[3!&162‘43 + 2n1C3 —{—-2—?112524432} (3 16)
1 v
Am = —’;z&- [(m _ 1) nlC2Am._1 + I 2n16m~1 +
1 Ao P42
+5m®®3 (m — 1) Asdny + ... 4 ® (2 + 1) A(’;‘—+1)1

(b=max {|b1|,...,|bn]})

For the proof of the convergence of the series (3.15) we make use of
the method of the dominating series, i.e. we construct a convergent
series with positive coefficients

vy (r) = Bar® - Bygr® L. .. L Bpy™ .. (3.17)

such that the inequality [9 ]
Am < B (3.18)

will be satisfied for all m after a certain one.

Let us consider the solution of the equation

<o
' d > a
ny (__ o+ D) Copm)r B2 122 (‘%2)2 Foart=0 (3.19)
m==2 ’
Here pu is some parameter for which the convergence of the series
Con® + Cqud + oL + Cui® ... is not violated; the numbers C, satisfy the

inequalities (3.12), while the numbers a, and a; satisfy the inequality
a; < a,%/4b?
i 1 .

The function v,(r), which is a solution of Equation (3.19), has the
form

va(r)=4Bur (3.20)

where B(u), a solution of a quadratic equation, is an analytic function
of the parameter p, and can be represented in the form of the series

B (p) = >} Bppm? (3.21)

m=2

Let us substitute (3.20) and (3.21) into (3.19), and equate to zero
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the coefficients of the various powers of x. The coefficient of the
first term of the series (3.21) satisfies the quadratic equation
9 ay g ) oal I3

i [T LS Y
— e Dy A = U S22
mb* T t 7y 20* { /

D
Dy

Equation (3.22) has two real positive roots, and the solution is given
by the expression

By =t e (3.23)

- 2n1b? nyb

The coefficient of the second term of the series is determined by
means of the equation

(nia:r — 2m®0%Bs) Bs = niC:B: (3.24)

The expression in the parentheses will be the same in all equations
for the determination of the coefficients of the series (3.21). It is
obvious that

mas — 2n20%Bs = 2mb | L, (3.25)

Let us assume that a; is known, and we are to select a; so that the
following equation be satisfied:

(t12 . . __i DT
T T (3.26)
Then we will have
9. o 1 ~
nmay — an"sz2 = 4, or B‘_’ = W(_(U — /7 \ (32/)
2n0% * SI

Now let us assume that a; > 2n1b2 + a/nl; then B, > 1. Carrying out
the computation, we obtain the following relations for the coefficients
of the series (3.21):

Bs = nCaBs
oA
By = j; lnCaBs 4 miCsbz - m26°Bs?) (3.28)

; i ‘ .y . o ‘ . N
b= o I,"llCZBm_1 A ml,, B2 -+ 2/712523331”‘._1 T ,113[)23“”,,_,%7‘)]

The resulting series (3.17) is then obtained by multiplying the
series (3.21) by r2, and by setting p = r.

Comparing (3.16) and (3.18), we can establish the validity of the in-
equality (3.18), and from this follows the convergence of (2.7). There-
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fore, in the case under consideration, the Liapunov function v(x) and
the optimal control u(x) do exist and are analytic functions in a
neighborhood of the point x = 0.

4. One can give a formal method for the construction of a control
u={u, ..., u,}, a vector function satisfying the condition of a
minimum integral deviation of the system from a given motion. Let us con-
sider a control system described by the differential equations

dr; [ dt = i (x, u) =1, ) (4.1)

Suppose that along the trajectories of this system the following
integral has a minimum:

oo
\ G (2, w) dt = min (4.2)
:
Here x = {%;, ..., x,} is an n-dimensional vector in the phase coordi-
nates of the given system; u=1{u;, ..., un} is a vector function which

describes the control; fi(x, u) and G(x, u) are analytic functions in the
neighborhood of the origin

filw,w) = V(@) + D) bwwr + @iz, ) (i=1,...,n (43

k=1

G (z, u) =9 (z EC(” (z) us + E dipuiy + G (z, u)  (4.4)

=1 k=1

where ¢.(x, u) and G;(x, u) are analytic functions that contain terms of
higher order in x and u; the coefficients b, and d;, are such that the
nx n matrices B=|{b,, || ;" and D =|{d;, || { are nonsingular.

Let v(x) and u(x) = {u;(x), ..., u,(x)} be functions satisfying the
conditions (a) to (c) of Section 1, whereby the minimum in (c) is taken
for all u,(x). Repeating all the considerations of that section, we ob-
tain the following equations for the determination of v(x) and u(x):

ELWu G(z,u) =0 (4.5)

i 8f 827 a6
! =0 =1,..., 4.6
; ™ (k=1,...,n) (4.6)

(9uk

We will look for the solutions of the system of equations (4.5) and
(4.6) in the form of series

vi(z) =v® () &-... oM () 4... (4.7)
w (@) =ui’ (@) + ... w7V @)+ =t (4S8
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Let us substitute (4.3), (4.4), (4.7), and (4.8) into Equations (4.6)

and (4.5), and equate to zero the coefficients of various powers of x.

Since the matrices B and D are nonsingular, the linear problem

du,
_zfi (‘)(r) + wsw zauﬁn (i=1,...,n) (4.9)
A =1
Swﬂww%zcw<w”+\‘mw“u)““mm (10)
: i ik=1

is solvable.

Liapunov’s function v2(x) will be a positive-definite quadratic form,
and the optimal control will satisfy the following system of linear non-
homogeneous equations:

U?:( 2)

2 Z dlkuil) (x :——Z bigp —— Ckm (z) (k=1,...,n) (441
Let us suppose that the functions v(?’(x), , v~ (%), and
(1)(x) ... k("'z)(x) k=1, ..., n) have been found. Let us write

down the terms of the mth order of Equation (4.5), and the terms of the
(m - 1)st order of Equation (4.6); we then obtain

1

S U@+ S bued® @) %zum“e(gb (@) +
?'»1 k=3
+2 Ejdmuﬁﬂgmugm—ncmzzﬁﬁmum) (4.12)
ikh==1
3‘ by 2 + 2 Z diu, ™V (1) = P () (k—1,..., n) (4.13)

11 ia=]

where Fl(')(x) and Fk(“"'l)(x) are known forms.

With the aid of the system (4.11), Equation (4.12) can be reduced to
the form

(ﬁ@) = F,™ (z) (4.14)

Since the system of linear equations (4.9) is asymptotically stable,
there exists a unique solution v{™(x) of Equations (4.14).

Substituting the found value of the function v{® (%) into (4.13), we
obtain for the functions uk(‘ 1) (x) a system of linear nonhomogeneous
equations which also has a unique solution because its determinant is,
by hypothesis, different from zero. Thus, one can successively determine
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the forms of any order in the series (4.7) and (4.8). Therefore, if the
matrices B and D are nonsingular, then there exists a unique formal solu-
tion of the problem.

In conclusion, let us consider the following special case:

dx. z,
B h@+ Dbame =1, (4.15)
o« n = n
K (Z 5t 4 3] uf)dt — min (4.16)
o M=t i=1

Equations for definition of v(x) and u{x) will have the form

n n n P n
Sh@ G-t B (Fw ) Fat=0 e
im1 ' k=1 V=1 ! i==1
Rk:—w—é—zz}{k—ggf (k:i,..‘,n) (4’18)
i=1 *

Repeating the arguments of Section 3, one can show that Liapunov’s
function v(x), the solution of Equation (4.17), is an analytic function.
Therefore, the optimal contrel u(x) = {u,(2), ..., u,(x)} exists and is
an analytic function in the neighborhood of the point z = 0 if the matrix
B=lb;,ll," is nonsingular.

I take this opportunity to thank N.N. Krasovskii for posing the prob-
lem, and for making suggestions to me.
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