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The author considers the problem of the formation of the guidance action 
in a nonlinear control system under the condition of the minimum of the 
integral for the estimate of quality for small initial disturbances. The 
problem is solved by the methods of Liapunov and Chetaev in stability 
theory. 

1. Let us consider the system of equations of a disturbed motion 

dx. 
L =7 fi (2, U) 

dt 
(i = 1, .( n) (1.1) 

Here n= (x,, . . . . x,1 is an n-dimensional vector in the phase co- 
ordinates of the system, u is a scalar function of the xi coordinates 
which describes the guidance action, the control. 

It is required to find such a control u(x) that for n = 0 the undis- 
turbed motion is asymptotically stable, and for which along the trajec- 
tories of the system the following integral will have a minimum: 

co 

\ 
G (x, U) dt = min (1.2) 

. 
0 

Here G(r, u) is a given function which characterizes the criterion of 
quality. Letov [ 1,2 1 has studied this type of problem for a linear 
system under the condition when G(x, u) is a quadratic form. 

We shall assume that the functions fi(z, u) and G(x, u) are analytic 
functions in some neighborhood of the origin x = 0, u = 0, and that they 
can be expanded in convergent power series 

fi(Cc, U) = ; ‘pi(m) (x) + 5 n&U” + 5 C&(m)(Z) Uk (i = 1,. . ., n) (1.3) 
TlX=l k-_-l !i. m=1 
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G (X7 u, = 2 ‘$@) (Z) + 5 Rkuk + ; qk(")(x)Uk 
77l==2 k-2 k, rn=l 

(82 =I= 0) (l-4) 

where the symbol (m) gives the order of the form. 

We shall give a sufficient criterion for the optimum of the control. 
This criterion will be based on the ideas of the method of Liapunov’s 
function [3 1 which involves certain ideas from the theory of dynamic 
programming [4 1. For this purpose we consider two functions v(n) and 
S(x) satisfying the following conditions: 

a) the function V(X) satisfies the conditions of Liapunov’s theorem on 
asymptotic stability [ 5, p. 29 1 ; 

b) the derivative function of u(x) satisfies,in view of the system 
(l.l), with u = E(n), the equation 

c) the 

(du 1 &x, = --c (r, E(4) 

function 

has a minimum at each point x of some neighborhood of the origin if 
one sets [ = u”(x). 

Theorem 1.1. If one can find functions G(x) and u’(x) satisfying con- 
ditions (a) to (c), then the control u = ILO will be an optimal control, 
i.e. it will satisfy the condition (1.2)*. 

Proof. From the condition (b) it follows by integration with respect 
to t that along the trajectories of the system (l.l), with [ = cr”(x) 

t 

ZI (z(t)) - u (zn) = 1 G (cc (T), u” (x (z))) dz 
0 

Let us now take the limit as t + ~0, taking into account the fact that, 
by condition (a), n + 0 when t + 00. We then obtain 

v (zo) = TG (x (t), u” (x (t))) dt 
6 

Let us assume that the theorem is false, that the control u”(n) satis- 
fying (a) to (cl is not an optimal control, namely, that there exists a 

l Such a criterion was given for linear systems in 16 1 . 
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control u,(x) such that 

7 G (z (t), UI (5 (t))) dt <i c; (z (t), CL’ (x (t))) dt 
b: 0 

for some initial condition x,,. From condition (c) we have 

Integrating this inequality along a trajectory of the system (1.1) 
we obtain 

which contradicts the hypothesis. Hence, the theorem is proved. 

2. In this section we present a formal method for the construction of 
a Liapunov function v(x), and of an optimal control u”(x) in the form of 
a power series in x. For the sake of simplicity, we shall drop the index 
O on 9 (x1. 

From ‘theorem 1.1 it follows that it is sufficient to find functions 
V(X) and u(x) satisfying the condition 

This condition yields the system of equations 

(2-l) 

(2.2) 

(3) 

We shall restrict ourselves at first to the lowest-degree terms in x 
and u of the series (1.3) and (1.4). Then the functions fi(z, u) = 
+.“‘(x) + Ailu (i = 1, . . . , n) will be linear functions, while G(x,u) = 

$ ;2) (x) + $(‘)(w)u + B2u2 must be considered to be a quadratic form 
(positive -definite).* lbe system of equations (1.1) will be a linear one 

* From practical considerations it follows that such functions estimate 
especially well the quality of transient processes [ 1,2 1 a 



Optiral stabilization of nonlinear systems 1257 

C/Xi 

/r- L (Ji”),(T) + Lli,U(‘) (J) (i= I 
7.. ., II) (2.4) 

and the condition for an optimum of the equation takes the form 
cc 

f ., NJ(?) (x) + $1 ( ) i (1) x ~(1) _I- Bz (7~0))~) ~!t = min 

From Equation (2.3) we find the control to be 

(2.5) 

(2.6) 

The Liapunov function u ‘2’(x) will be a quadratic form whose coeffi- 
cients satisfy a system of quadratic equations which are solvable under 
certain conditions. These conditions were found in [6 I. We shall assume 
that the conditions for solvability of the linear system are satisfied, 
and that we know the solution of the linear problem v ‘2’(x) and u(‘)(x). 

‘Ihe solutions of Equations (2.2) and (2.3) are to be found for the 
general case in the form 

2’ (x) =.d?) (Lx) + v(3) (Lx) + . . . + a(‘@ (z) + . . . (2.7) 

U (x) = IL(‘) (r) + U@‘(S) + . . . + u@--1) (x) + . . . (2.f9 

Let us formally substitute (1.3), (1.4), (2.7) and (2.8) into the 
system of equations (2.2) and (2.31, and let us equate to zero the co- 
efficients of the powers of x. Hereby, the terms of the mth order in 
Equation (2.2) will corres ond to the terms of the (m- 1)st order in 
(2.3). For the functions u 7 2)(z) and u”)(x) one obtains the same equa- 
tion as above in the consideration of the linear problem (2.4), (2.5). 

Let us assume that the functions V(~)(X), 
P)(x), . ..) 

v(‘- l’(x), and 
ZJ(~-~)(X) have been found. Let’us’write down the mth-order 

terms of Equation (2.2)) and the terms of the (m - 1)st order of Equation 
(2.3). We thus obtain 

_i_ 31y,U(l) (.I’) U(“‘-‘) (:1.) -t 11(111-l) (Tc) Al (~) = Fl(m) (,~) (2.9) 

i & ag! .I_ 2H,p-‘) (x) = @n--l) @) 

i -1 1 

Taking into account (2.4) and (2.61, we can transform 
to the form 

(2.10) 

Equation (2.9) 
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(2.11) 

Here F1(s)(x), F2 (m-1)(x) are known forms; the symbol (dv("'/dt),, 

indicates the derivative on the basis of (2.4) when u"'(x) is given by 

4J 

(2.6). 

Since the system (2.4) is asymptotically stable, we have by Liapunov's 

theorem ['7, p. 61 1 that there exists a unique solution of Equation 
(2.11). Knowing 21 ('j(x), we can find u (@-')(x) with the aid of (2.10). 

Thus one can determine successively the forms of any order in the series 

(2.7) and (2.8). Hence, if the problem (2.5) can be solved for the linear 

approximation, then there exists a unique formal solution of the non- 

linear problem. 

3. In this section we prove, for a typical case, the convergence of 

the formal series whose construction was described in Section 2. 

Let us consider the system given by the equations 

t/CC. 
2 = fi (2) fbiU 
clt 

( fi (x) = ; fP (xl! (i = 1, , n) (3.1) 
WI=1 

where fi(x) are analytic functions. 

Suppose that along the trajectories of the system (3.1) the following 

integral is minimized: 
“p n 

0 Xi2 + U2)dt = min 

0 i=l 

(3.2) 

The functions v(x) and u(x) satisfy the conditions 

i fi (2) $$ -+[ i bi gj2 + i xi2 = 0 (3.3) 

i=l i=l i=l 

u_-+&- (3.4) 

i=l 
1 

V/e shall assume that the solution of the linear problem V(~)(X) and 

U(')(X) is known, and that the linear system of the first approximation 

(i = 1, , 72) 

is asymptotically stable. Let 

Xi = Cilyl + s * . + Cin& (i = 1, . ) n) (3.6) 
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be a linear nonsingular transformation [8 I which reduces the quadratic 
form V(')(Z) to the form 

V(') (y) = y12 + . . + yn2 (3.7) 

Let its inverse transformation be given by 

yr = di$l + . * * + dirLZ,, (i = 1, . . . ( n) (3-S) 

Since the roots of the characteristic equation are invariant under 
any linear nonsingular tr~sformation, the linear system in the new vari- 
ables will also be asymptotically stable, and it will have the form 

= i dj,fi(l) (x (y)) - +- Rj i B, g (i=f,.,.,n) (3.9) 
i-=1 jz=l 3 

while Equation (3.3) will become 

where 

i Pj(&$_$& Bj+Jf i B#J&==O (3.40) 

j=l , j=l 3 ;j=1 

Fj(?J) = $ ~j~~i(~(~)), Bj = 5 $ibi (i=l,...,rz) (3.11) 

i=l i=l 

The functions Fj(y) will obviously be analytic functions in the new 
variables, and Equation (3..10) will be of the same type as (3.3). Hence 
we shall assume that the transformation (3.6) was made to begin with, 
and that the solution of the problem (3.5) has the form V(~)(X) = xl2 + 
. . . + xnz. 

For what follows we need the next assertion. 

If f@, . . . . f,(x) is the system of analytic functions of the 
right-hand sides of Equations (3.1), then there exists a convergent 
power series 

5 G rnt (r2 = $J cci2) 
??a=1 &=I 

such that the following inequality is valid: 

1 I?“’ (x) I< GP (i=i,..., n; nt=i,2,3**.) (3.12) 

Let us substitute (2.7) and (3.1) into (3.31, and equate to zero the 
coefficients of the powers of x. Then we obtain the following set of 
equations for the determination of the terms of the series (2.7): 
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where the last term occurs only when m is even. 

For the proof of the convergence of 
the known inequalities 

the series (2.7) we make use of 

where c is a coefficient of proportionality which does not depend on the 
order of the form. We also utilize (3.12) and consider the series 

( drn) (5) I< Adrn, < cm A,#+-1 (3.14) 

2, (r) = r2 + Asr3 + . . . + A,,/” + . . . (3.15) 

Ihe series (3.15) is a dominating series for (2.7). It is only neces- 
sary to establish estimates of the coefficients A, for which the series 
will converge. With the aid of the relations (3.13) we estimate A,, A,, 

.*- A II’ *** * From the first equation of (3.13) we have 

1 u(s) (5) / = / - 7 i /i(2) (IC) g dt 1 < 2ncC, 7 F3dt 

Ii i=l G 

Let us introduce the notation n1 = nc, and make use of the inequality 

r(t) < roe -a(t) which is satisfied by the solution of the system (3.5) 

because r 2 = x1 2+ . . . + xn2 = vt2)( x) is a Liapuno v function for the 
system of the first approximation. 

‘Iben we obtain 

( v(3) (5) ) < ii- 2n1c2ro3, 
’ 3a 

or A3 = & 2nlC2 



Optimal stabilization of nonlinear system 1261 

In exactly the same way we estimate V(~)(Z), V(~)(X), and so on. We 
thus obtain the following values for the coefficients of the series 
13.15): 

1 
As = - 2n1Cz 

3a 

AP=& 
i 
3dzA3 

9 
+ 2n1C3 + 7 m2b2 A32 

3 
(2 fG) 

. . . . . . . . . . . . ..r*....*..... 

1 
A, = mcl (m - 1) mCzA,_, + . . . -!- 2mCm__1 + 

I 

(6 = max (161 I, . . . , I bn 11) 

For the proof of the convergence of the series (3.15) 
the method of the dominating series, i.e. we construct a 
series with positive coefficients 

ri (r) = B,r2 $- B3r3 + . . . + B,P + . . , 

such that the inequality [9 I 

&\<&l 

will be satisfied for all m after a certain one. 

Let us consider the solution of the equation 

we make use of 
convergent 

(3.17) 

(3.18) 

nl ( -4 -I- 5 c&+2.%+ (dVZjl. n12b2 clr + alr2 = 0 (3.19) 
VI==2 

Here p is some parameter for which the convergence of the series 
c;$ + CJ + . . . + c&P.*. is not violated; the numbers C, satisfy the 
inequalities (3.121, while the numbers a1 and al satisfy the inequality 
a1 < a12/4b2. 

‘I&e function u2(r), which is a solution of Equation (3.19), has the 
form 

uz (r) = $B (p) r2 (3.20) 

where B(p), a solution of a quadratic equation, is an analytic function 
of the parameter IL, and can be represented in the form of the series 

B (p) = 5 B,py (3.21) 
m=2 

Let us substitute (3.20) and (3.21) into (3.191, and equate to zero 
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the coefficients of the various powers of x. The coefficient of the 

first term of the series (3.21) satisfies the quadratic equation 

Equation.(3.22),has two real positive roots, and the solution is given 

the expression 

(3.23) 

'She coefficient of the second term of the series is determined by 

means of the equation 

(nlal - 2m2bzB2) B3 = ~llCaBz (3.24) 

The expression in the parentheses will be the same in all equat 

for the determination of the coefficients of the series (3.21). It 

obvious that 
2 

ions 

is 

(3.25) 

Let us assume that a1 is known, and we are to select a1 so that the 

following equation be satisfied: 

(3.26) 

Then we will have 

Now let us assume that a1 >, 2n,b* + a/nl; then B, 2 

the computation, we obtain the following relations for 

of the series (3.21): 

I 
B3 = -r d2U2 

191 = -k [nlC2l.l3 _1- n1C31y2 +- /112b’Ll3”] 

. . . . . . . . . . . . . . . . . . . . . . 

1. Carrying out 

the coefficients 

(3.28) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The resulting series (3.17) is then obtained by multiplying the 

series (3.21) by r*, and by setting p = r. 

Comparing (3.16) and (3.18), we can establish the validity of the in- 

equality (3.18), and from this follows the convergence of (2.7). 'lhere- 
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fore, in the case under consideration, the Liapunov function v(x) and 
the optimal control u(x) do exist and are analytic functions in a 
neighborhood of the point x = 0. 

4. One can give a formal method for the construction of a control 
a=I ul, . . . . u,f, a vector function satisfying the condition of a 
minimum integral deviation of the system from a given motion. Let us con- 
sider a control system described by the differential equations 

dXi / dt 

Suppose that along the 
integral has a minimum: 

= ii (x7 4 (i ~:z I , . , ,,I (4.1) 

trajectories of this system the following 

3 G (xc, u) dt = min (4.2) 

Here x= (x1, . . . . xn) is an n-dimensional vector in the phase coordi- 
nates of the given system; II = ( ul, . . . , un] is a vector function which 
describes the control; fi(z, u) and G(x, u) are analytic functions in the 
neighborhood of the origin 

fi (0, U> = .ff’ (z) + i bikuk + ‘pi (z, U) (i=l, . ..( n) (4.3) 
k-1 

G (2, U) = I#(~) (Z) + if??) (2) Ui -j- i dikuiuk + GI (2, U) (4.4) 
i=l ik=l 

where $i(z, u) and Gl(x, u) are analytic functions that contain terms of 
higher order in x and u; the coefficients bik and dik are such that the 
n x n matrices B = I( bi, 11 I” and D = I( di, 111” are nonsingular. 

Let V(X) and u(n) = I u,(x), . . . . u,(x)] be functions satisfying the 
conditions (a) to (c) of Section 1, whereby the minimum in (c) is taken 
for all uk(r). Repeating all the considerations of that section, we ob- 
tain the following equations for the determination of V(X) and u(x): 

(4.5) 

(k=i,...,n) (4.6) 

We will look for the solutions of the system of equations (4.5) and 
(4.6) in the form of series 

2; (z) = U(2) (z) + . . . + U@‘) (z) + . . . (4.7) 

!+ (2) = ujj’ (x) + . . . + 2$+-l) (z) + . . . (k=i,...,n) (4.8) 
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Let us substitute (4.3), (4.41, (4.7), and (4.8) into Equations (4.6) 

and (4.5), and equate to zero the coefficients of various powers of X. 

Since the matrices B and D are nonsingular, the linear problem 

(i = 1,. . . ,n) (4.9) 

is solvable. 

Liapunov's function v'(n) will be a positive-definite quadratic form, 

and the optimal control will satisfy the following system of linear non- 

homogeneous equations: 

2 i &kU~i'(X) f _ 5 &,,, ?!! _ Cd" @v) (k = 1, . I I , II) (4.11) 

i-l i=l 
"Xi 

Let us suppose that the functions ZJ(~)(Z), ..,, v("-l)(n), and 

"'(X) uk(n-2)(r) (k = 1, . . . . I?) have been found. Let us write 
%vn the'terms of the mth order of Equation (4.5), and the terms of the 

(m- 1)st order of Equation (4.6); we then obtain 

ik-1 

1 

a+) 
5’ bit; - 
i axi 

+ 2 $ dik 2$--l) (x) = Jp-“(Z) (k-l,..., 71) (4.13) 

i --I i=l 

where Fl(')(x) and F, (sW1)(z) are known forms. 

With the aid of the system (4.11), Equation (4.12) can be reduced to 

the form 

(4.14) 

Since the system of linear equations (4.9) is asymptotically stable, 

there exists a unique solution V(")(X) of Equations (4.14). 

Substituting the found VT? of the function I into (4.131, we 

obtain for the functions uk -l'(x) a system of linear nonhomogeneous 

equations which also has a unique solution because its determinant is, 

by hypothesis, different from zero. Thus, one can successively determine 
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the forms of any order in the series (4.7) and (4.8). ‘Iherefore, if the 
matrices B and D are nonsingular, then there exists a unique formal solu- 
tion of the problem. 

In conclusion, let us consider the following special case: 

Equations for definition of V(X) and u(n) will have the form 

i ii (x> -$- - t i ( i bik $)” + 5 Xi2 = 0 
i=l 

i 
k=l i=l i==l 

(k = 1, . s . , nf 

(4.15) 

(4.16) 

(4.17) 

(4.1S) 

Repeating the arguments of Section 3, one can show that Liapunov’s 
function v(x), the solution of Equation (4.17), is an analytic function. 
Therefore, the optimal control u(z) = ( uI(x), . . . , u,(x) I exists and is 
an analytic function in the neighborhood of the point 2: = 0 if the matrix 

B = If biA II 1 n is nonsingu;ular. 

I take this opportunity to thank N.N. Krasovskii for posing the prob- 
lem, and for making suggestions to me. 
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